Model-Driven Engineering for implementing the ISO 19100 series of international standards

Cyril FAUCHER1 and Jean-Yves LAFAYE2

1 IRISA/INRIA, Campus de Beaulieu, 35042, Rennes cedex, France
2 Laboratoire L3i, Université de La Rochelle, 17042, La Rochelle cedex, France

cyril.faucher@irisa.fr
Outline

- Introduction and context
- Model-Driven Engineering and ISO standards
- Generate an end-user application by using the standards
- Conclusion
Introduction and context

- Manage ISO standards
 - many applications software implement ISO standards
 - but often these applications are black boxes

- Taking data providers requirements into account
 - more and more datasets
 - the types of these datasets is very heterogeneous
 - flexibility and genericity are required
Introduction and context

- **Why metamodelling**
 - a standard exchange is sufficient? Only to share data
 - data providers want to add new data structures without modify the software architecture
 - need for accessing the application structure to manage system
 - manage the elements building the application

- **Model-Driven Engineering (MDE)**
 - provide tools to manage applications at a high level of abstraction
 - decomposition in several modelling layers of the IS design
Introduction and context

- **ISO TC 211**
 - specification of the ISO 19100 series of standards

- **Several specifications**
 - data definition
 - data structure
 - metadata for georeferenced objects
 - aims at exhaustivity
 - provides embedded structures
Introduction and context

- **Contribution**
 - benefits of using MDE for prototyping and building an end-user application
 - the presented example exploits the various facets of the ISO 19100 series: metadata catalogue, the geographic features, the data structures and the data display
 - this work is part of an open-source project: Emios

- **EMIOS (Environmental Memory Interoperable Open Service)**
 - provide a range of services for storing and sharing information about environmental research activities
 - provide an extensible framework to facilitate the prototyping of IS dedicated to a study area
Outline

- Introduction and context

- Model-Driven Engineering and ISO standards

- Generate an end-user application by using the standards

- Conclusion
Model-Driven Engineering and ISO standards

- ISO standards integration into the MDE concept
 - paradigm that says everything is a model
 - several application standards of the series are based on this paradigm
 - another standard is designed, e.g.: ISO 19115 is defined by ISO 19110

A Feature Type is: « an abstraction of a real world phenomena » (from ISO specification)

From ISO 19109

From ISO 19110

From ISO 19115

From ISO 19117

Specific Feature Type for the definition of a Metadata model

GF_FeatureType

PF_FeaturePortrayal

FC_FeatureType

FC_FeatureCatalogue

Metadata Application Model

Dataset

conforms to
ISO 19117 metamodel defining a portrayal language

defines a language to specify the portrayal of FeatureTypes
Outline

- Introduction and context
- Model-Driven Engineering and ISO standards
- Generate an end-user application by using the standards
- Conclusion
Generate an end-user application by using the standards

- **Presentation of the example**
 - Implementation of a part of the Metadata standard model

- **Topcased graphical editor generator**
 - Open source solution
 - Templates for generating graphical editors
Generate an end-user application by using the standards

- Generation process of a graphical editor thanks to ISO 19100

1. ***.iso19110**
2. ***.iso19117**
3. ***.ecore**
4. ***.genmodel**
5. ***.diagramconfigurator**

- A portrayal specification related to the feature types
- Input resources
- 2 feature types has been defined
- Requirements defined by the IS administrator
- Generated models and used to generate the source code of the end-user application
- Generated Graphical Editor

M D Metadata
- entityId : EString
- data : EString
- contact : EString

M D Identification
- abstract : EString
- purpose : EString

Generation multi-platform:
Java, html, php
In our case, this is in Java (Topcased templates)
Generate an end-user application by using the standards

A specification example:
FeaturePortrayal: “identification1” linked to “MD_Identification” (instance of FeatureType)
 PortrayalRule “pr0” without link
 priority = 0 // default portrayal
 portrayalAction = (" MD_Identification.setFigureType("box") ") // figure type
 portrayalAction = (" MD_Identification.abstract.setFigureType("label") ")
 portrayalAction = (" MD_Identification.purpose.setFigureType("label") ")
 portrayalAction = (" MD_Identification.setColour(255,255,128) ") // yellow for the box
 background
 PortrayalRule “pr1” linked to “abstract” and “purpose”
 priority = 1
 queryStatement = (" if(abstract.getSize()==0 or purpose.getSize()==0) ")
 portrayalAction = (" MD_Identification.setColour(255,0,0) ") // red
 PortrayalRule “pr2” linked to “abstract”
 priority = 1
 queryStatement = (" if(abstract.getSize()>25) ")
 portrayalAction = (" abstract.subString(25,0) ") // subString method

External functions that are used:
getSize(String text) : int
setFigureType(String type)
setColour(int R, int G, int B)
subString(int size, int start) : String
PortrayalCatalogue: “PC1” contains {identification1, getSize, setFigureType…}
Generate an end-user application by using the standards

- Generated end-user application

 - Graphical editor
 - Well-formed model: model checking ability is provided *de facto*
 - Saving in an interoperable way (xmi-xml)

 Metadata Model Outline
Conclusion

- Interest of Model-Driven Engineering (MDE) for implementing part of the ISO standards
- Fast prototyping abilities to design an Environmental IS
- Generic feature of the approach to solve specific issues
Any question?

http://emios.sourceforge.net